Feeds:
Posts
Comments

Archive for the ‘medical innovation’ Category

Isn’t it time we flipped around the old ‘divide and impera’ (‘divide and conquer’) strategy attributed to the Romans and used for centuries to assert dominance? (The correct Latin term for “unite” might be “iungo”, but you get my gist). While the strategy has pretty effectively helped many generals and emperors take over large pieces of our world’s map, I am proposing that it is also the single most important reason for which most major empires have ultimately failed, being reduced to history book chapters or precious relics needing the controlled environment of museums to survive… This should not remain a history book story, but a living lesson for today’s world.

Now, fast forward to what is happening in the pharmaceutical industry today, where several companies that have dominated the world of pharmaceuticals, not unlike the great empires with their own achievements, territorial claims and peculiar corporate cultures are marching toward the “patent cliff”. The causes for what I believe is essentially a pharma innovation problem could fill in many posts. The current pharma model is increasingly more analyzed and scrutinized and thought to be unsustainable. Every day brings new stories that have created for me the vision of  a pharma’s “python phase”. To feed their draining pipelines, many companies ingest and digest consecutive boluses, M&A, expansions and cuts, which constantly inflate and deflate their bodies. What I decided to do here is to simply summarize how observations I made from a completely different situation – to me, a great way to learn! – may hold clues about other powerful strategies to survive life-or-death challenges.

I have recently learned about the practical and harmonious solution to survive the extreme challenge of the frigid waters in the Bay area during my recent visit at the Dolphin Club, a swimming and boating club in San Francisco. I have already raved elsewhere (Sports-inspired life and business lessons) about my admiration for its members who challenge the frigid open waters of the bay. If I had to summarize in only two points what was needed to survive those waters from an individual perspective, it would have to be: 1) cross-training and 2)… being “Zen”! But I also learned fascinating things about the strategy that constitutes the basis of the club and about its inner functioning from Reuben Hechanova, the current boat captain and upcoming 2011 president of the club. Everybody has to share learnings such as hypothermia classes and to regularly work together to maintain the wooden boats, even if they are not rowing them, as one day they may save their life. While touring the club one of the returning rowers reported to Reuben having had a “fantastic” row! “I had the opportunity to save a swimmer who was beginning to experience hypothermia”. These people not only share the waters (politely giving way), but they closely collaborate to successfully conquer them. For instance, I learned that for long swims, the club members move in a well-orchestrated formation, again reminiscent of the Roman’s tactics, with the swimmers in the middle surrounded by small boats, while all being flaked by the bigger wooden boats protecting from them from the potential impact of passing tankers and being ready to take back to safety anyone succumbing to hypothermia. In my many years as a rower, I had never come across such tight symbiotic collaboration between swimmers and boaters. I believe the reason is that I do not know of any other place that chose to deal with such an extreme challenge: normally rowing clubs have rules that require members to stop operating when the water temperature gets too low to be comfortable for swimming (to prevent hypothermia in case the rower accidentally falls into the water). Most outdoor swimming facilities close even earlier in the year! But, what is one to do in San Francisco, where the temperature of the Bay waters is never warm enough for most people to comfortably swim in it? Here, some people choose to jump into frigid waters and seem to love it, but not before having a survival strategy in place that capitalizes on the close, symbiotic, collaboration between rowers and swimmers. Rowers need to be able to withstand swimming if needed, swimmers need to be able to rely on or become rowers should one need to be saved from hypothermia.

Just had a great row... saving a swimmer!

So here are the three main points I derived from my recent visit about how collaborations may work for survival:

1. Goal/Need to conquer the same domain/major challenge, e.g., the frigid open waters.

2. Have complementary strengths: some are experts at moving inside the water, some over it.

3. Should share enough trust, knowledge, and capabilities to be able (and willing) to jump to the rescue or even into the other’s shoes, in this case, at the drop of an oar!

Also based in San Francisco is the UCSF. Last week, a press release announced a major common effort with Pfizer, which is expected to lose exclusivity for world’s largest ever earning drug, Lipitor, in exactly one year from now . The waters below that patent cliff might be very frigid indeed! We applaud this trend, it may produce some of the greatest example of ‘unite and impera’ our common global challenge: developing new therapeutics to address the unmet medical need. Let’s see, do the other, sports-inspired lessons apply? Do the two partners have different strengths? Check: academia excels at the “fuzzy” innovative front end of life science discoveries, while pharma’s strength is the late stage development and commercialization of therapies.

And, how about the third lesson: How much do pharma and academia share in terms of trust, knowledge, and capabilities? More and more facilities that are appropriate for drug development are becoming available, either “for hire”, being used by or built for academia’s and other self starters’ use. Mind you, several have been deserted specifically due to pharma’s budget cuts, including Pfizer’s own site demise in Ann Arbor, Michigan, and many are operated via new government programs. Do I dare say the major lasting dividing problem remains the lack of trust and knowledge sharing, not only of intellectual property (IP) per-se, but even that of common “know how” of drug development. A better shared understanding of “what” and “how” to develop a new medicine will only increase our common ability to conquer diseases. This knowledge, “as good as gold”, could be as enabling as the precious coins made of it, or, if not shared, will remain as elusive as the buried treasures of a lost pharma empire.

Advertisements

Read Full Post »

Personally I firmly believe that achieving creativity and innovation in science and beyond requires diversity… of thought! If you agree with this statement, let’s see if I can maintain your attention (I know, merely hearing – again – the ‘Diversity’ word might have turned you off!)

From my experience, most of us are not intentionally biased, yet in the same time not immune to the various cultural influences that have shaped our choices, including whom we feel “comfortable” associating with in our personal and professional relationships, or whom we might subconsciously stereotype or avoid. Also from experience, the best way to “cure” this is to have the opportunity to interact directly and learn first-hand from people who are different, then, by engaging in a more sustained and purposeful interactions with those with whom we discover common interests – which in my experience always had a positively innovative effect on what ever problem was at hand. To get started, one can always find at least one common denominator with almost anybody else on this planet: whether it is some of the shared personal or professional experiences or interests, stage in life or career, common acquaintances, hobbies, etc. I can always talk to other parents about our kids, other scientists about their own experiments, or anybody about countries they live(d) in and I might have been fortunate to visit, etc., etc.

Let’s try to define diversity. Statistics related to diversity usually capture data in terms of the “visible” (explicit) differences between people, e.g., gender, race, ethnic background, orientation, so this is what we have to rely on in terms of citing numbers. While these characteristics constitute a strong basis for diversity, i.e., people with different life and educational experiences may be likely to think, be motivated and act differently, I will however submit that these do not tell the whole story. Personality traits also play a major role, e.g., some of us are more creative or more analytical, “big picture” or micromanager type, while other are more directive or sensitive, direct or indirect, etc. So while we might look very different we might think alike, or might look very similar but have a very different perspective and approach to problem solving. These characteristics, I believe very important in shaping interactions and results, remain less acknowledged probably because they are more difficult to measure (assess and capture). However, making a conscious effort to engage people who represent several of these is important in creating a strong innovative team characterized by diversity of thought! My favorite kind of “constructive interference“…

Coming back to statistics, recent numbers provide evidence that while the situation might be slightly improving, gaps continue to exist between the demographics of talent diversity both in the USA and all over the world, and the higher in the hierarchy the less of it. These differences are true both in academia and in the industry (see list of references, incl. articles from “The New York Times” and “The Economist” and several statistics). One of the top reasons identified for the gap is the lack of role models, i.e. having in senior/high-profile positions people with whom various minorities could identify themselves. Seems to me this is a typical “chicken and the egg” type of problem: can’t attract/groom diverse people unless they can have access to role models, and you can’t have role models unless you had groomed or attracted them to join… How could this diversity ball get rolling???

Three main avenues could be explored for finding “cures” for this potential issue:

  1. Official/Institutional initiatives: aimed at designing programs and allocating funds for education and operational support
  2. Grass roots initiatives: creating “spontaneous” support networks, that provide a critical mass
  3. Personal initiatives: “upstart” individuals willing to get started “alone”, learn all the hard lessons and then pass on the learnings to willing newer recruits.

Diversity is a wast subject so I will try to focus on just one of the facets captured by statistics and recently highlighted in a few articles, likely because it is still March the “women’s history month”. Here are some published and personal experiences related to the situation of women in the work place.

  1. In the category of “official” initiatives,The New York Times” writes about the current status of women faculty at Harvard, which had attracted a lot of attention not too long ago due to the remarks of then president Larry Summers who said: “there are issues of intrinsic aptitude, and particularly of the variability of aptitude,” which he said are reinforced by “lesser factors involving socialization and continuing discrimination.” By making this single comment, Summers helped with the status of women at Harvard more than could ever dreamed of! He single handedly brought so much public scrutiny that upon his resignation, Harvard appointed their first woman president (Dr. Drew Gilpin Faust) and instituted programs aimed at increasing representation of women faculty, specifically in previously seriously underrepresented scientific and engineering departments (for more details see original reference, below). The rest of academia and the private sector are not doing much better, especially in terms of women representation at the higher levels (see statistics for USA and Europe). In the USA, the Equal Employment Opportunity Commission is prohibiting employment discrimination, however this is not universally applicable (see link for details). European countries have similar programs and have been passing additional related laws that aim at the next level of employment equity, including mandating that 40% of the corporate board membership be female. An article recently published in “The Economist” points out these measures would address the symptom but not the cause: not enough professional women to choose from for leadership positions! The article emphasizes that the best way to ensure an increase in the number of women on boards is to take steps to enable access of more women to the right experiences down on the corporate ladder. As with everything else, the human “talent pipeline” needs to be strong to generate a great output. My personal view on such initiatives is the while very useful to “keep us honest” and provide financial incentives and support, they are many times not very popular, especially with those who can not identify with the need and or the potential bias.
  2. The “grass roots” networks are by contrast those people choose to create and support. A truly great support system is created by people who are “like” and “unlike”, whether in terms of personal or professional characteristics (real diversity!) but are willing to understand, learn to appreciate differences and help widely. A person “like” me is able to share with me similar experiences, their “pain” and their tried strategies and successful solutions. “Unlike” people and professionals can help me understand the others’ perspectives and approaches. These represent a great opportunity for all of us to prove we are not biased. Such support networks can provide access to information via various sources (the best is directly from willing mentors!!) but also connect individuals with other education and work opportunities, including identification of collaborators. Also from personal experiences, the best mentors were those whom I had personally identified and approached for help, not the ones who have been “designated” to me via official programs.  In an effort to create support opportunities, I have startedMy Lab Your Lab” , a global online scientist professional community whose essential mission is to enable member-driven support. We encourage our members to reach out to seek and offer assistance from and to all.
  3. In the personal support category, I include individuals who have the courage to join work teams which are constituted from essentially different people to learn how to “survive” and actually thrive among them – diversity goes both ways! These individuals can become agents of change and the heart of the talent diversity snowball that allows it to form and get bigger… I think this works best when they voluntarily assume that role, because it is not an easy thing to do, requiring courage, extra time and effort, potentially at the expense of other professional goals. However, rewards could be great both for the person and the work place that facilitates such efforts. This is a very important point: the work environment needs to be supportive. No matter how accomplished and willing to help, such individual efforts will lead nowhere, just as the soil needs to be prepared, or else even the most exceptional seed will not survive.

One of my proudest contribution to diversity is related to my experience as a female and “biomedical” (medicine) faculty member joining a graduate program at the Georgia Institute of Technology: 100% male and 100% engineering. I think it helped that I am generally “gender blind” myself in work situations and I had been already operating for several years in another male dominated field, the world of academic cardiology. Yet, the first thing I thought of (because it was so obvious!!) and articulated to the people who had hired me was: “Next I will help you recruit some great female faculty”. Indeed they were on board with it, and together we proceeded to attract and hire two more women. Within a couple of years we became the “go to” place for female graduate biomedical engineering candidates, to the point where by the time I moved several years later, the student graduating class was 100 % (!) female. When asked why they chose Georgia Tech over other potentially more established programs, our graduate female students said that seeing several female faculty in the program helped them envision the possibility of academic success and increased their confidence that they would be able to relate if needed. Our ‘girls’ did not turn out to actually request or need much gender-specific help from us, the mere existence of female faculty had worked! My take home lesson was that it was worth taking the risk to be the first “one of a kind,” and getting involved in supporting efforts to attract and build a basis for more diversity which in turn engendered positive change and innovation.

So, several ways we can all get this ball rolling!

References:
U.S. Equal Employment Opportunity Commission http://www.eeoc.gov/employers/index.cfm
Lewin, T: “Women Making Gains on Faculty at Harvard”, The New Your times, March 13, 2010 http://nyti.ms/9QZyyX
Schumpeter: “Skirting the issue: Imposing quotas for women in boardrooms tackles a symptom of discrimination, not the cause” The Economist, March 11,m 2010 http://bit.ly/9rs8VA
EUR (2009) She figures 2009: Statistics and Indicators on Gender Equality in Science http://bit.ly/4QWnk5. EUR 23856 EN EUR 23856 EN (160 p.)
Leadley J (2009) Women in US academic medicine: Statistics and Benchmarking Report 2008-2009 http://bit.ly/8mB3e6. (34 p.)
AWIS (The Association of Women in Science) web page with links to various data sets http://bit.ly/97O2nF
“The Scientist” salary survey by gender and ethnicity http://bit.ly/d81RKP

Read Full Post »

Great quality life sciences fuel medical innovation, but great science usually requires “happy scientists”. Where are they now, and what can we learn about that makes them happy? Are they different from other people?

From the beginning I need to say that I can’t claim to have the definitive answer to this question. However the subject has been interesting to me as an educator and manager of scientists, and here are some personal comments triggered by looking at the 2009 surveys published by ‘The Scientist’, a magazine specializing in the life sciences, as well as other independent studies I had found on the overall topic of work and personal happiness. In case you can’t tell, these contain information that pertains to the factors that make scientists (and other working people) happy…

In their 2009 annual survey of “Best places to work” in academia, they listed the ‘top ranked 40 places’ in US and the ‘top 10 ranked internationally’ (you can see their surveys and methodology here). As someone with a scientific background would instinctively do, as soon as I saw data, several potential explanations immediately came to my mind (as well as more questions, that generated hypotheses I think would be nice to test…) But let me start with the data collected and made widely available thanks to ‘The Scientist.’

What makes an institution a great place to do science?
Venture some guesses? I will make the assumption that overall the responders’ sense of satisfaction for their place of work is related to its listed strengths. Those most often cited by all top ranked 40 US academic institutions were: ‘Research resources’ and ‘Infrastructure and environment’ (17 times each), also ‘Job satisfaction’ (11 times) and ‘Teaching and mentoring’ (9 times).

At my very first inspection, as one would expect, what caught my eye were places I am very familiar with (two of my previous home institutions). More specifically, Emory University in Atlanta, Georgia made the list within the top 5 (at #5), while Brigham and Women’s Hospital, in Boston, MA came in at #39. The strengths listed for Emory were ‘Peers’ and ‘Job Satisfaction’, while for Brigham and Women’s these were ‘Management and Policies’ and ‘Infrastructure and Environment’.

Interestingly (I think) the ‘Pay’ category is cited as a strength only for 10 out of the top 40 institutions, and only once in the top five (University of Oklahoma Health Sciences Center, Oklahoma City, OK). Furthermore, the specific example that struck me when looking at the other survey about salary levels, was the observation that the average pay in the state of Georgia is lower compared to other US states, with the sole exception of the state of Ohio. Of note, another Georgia institution, the Medical College of Georgia, Augusta, GA also made the top 40 list in 2009, at #14. Again, I’m making the assumption that the “happy customers” of the first survey were the same with those paid less than the average US academic pay (a ‘side thought’ that came to mind was: ‘they might become less happy after seeing this US salary survey!’). Thus, based both on overall weight and the specific case, the pay per se did not seem to dampen scientists’ enthusiasm (at least not for these two GA work places!) One factor that was important was “job satisfaction”, which might be harder to define, yet there is information available on what motivates people and makes them feel they had a “great work day” (including later in this post).

Also, worth noting are the specific reasons for which some institutions are top and/or climbed really fast in the ranking. The institution ranked as #1 in the US, is Princeton, very small with only 203 full-time life scientists, which helps foster – indeed forces! – interdisciplinary collaborations/relationships. Max Planck’s Institute of Molecular Cell Biology and Genetics in Germany which ranked as the top institution internationally, also encourages strong cross-field collaborations and social interactions between scientists, strongly supported by their unusually democratic leadership system. Interestingly a common theme that lifted the University of Oklahoma Health Sciences Center in the US ranking from 30th to the #4 place and brought the University of Groningen (in the Netherlands) directly at #4 in the ‘top 10’ world-wide, was their focus on recruiting and supporting young talent.

Thus, the 2009 survey results seem to be consistent with the fact that scientists are happiest when they are able to do the best possible science. This requires not only passion, curiosity, resilience, dedication, hard work, from the researchers themselves, but also a supportive environment, specifically enabling interdisciplinary collaborations through appropriate institutional policies and infrastructure. Hopefully administrators, regulators, and others with the power to influence the enviroment (of universities and other science-driven institutions) are paying attention to this type of feedback.

Do these findings surprise you in general/ do you work in any of these places? Any additional insights?

What makes people happy with their work in general?
This refers to the ‘job satisfaction’ definition, but also to the question whether things that make scientists happy are any different from those important to other professions?

For instance, the results of these scientists’ surveys seem to challenge the conclusion that ultimately “work IS about money”, as Susan M. Heathfield had drawn from her own research about what motivates people at About.com Guide, yet they likely do not surprise many of us. We all know many great (even if not famous) scientists who think more about giving through their work, rather than obtaining something from it, unless one would say they obtain the satisfaction of being able to figure out things that will ultimately “save the world”? Ms. Heathfiled does indicate – seemingly in an effort to recognize that some people have different motivation that: ’Some people work for love; others work for personal fulfillment. Others like to accomplish goals and feel as if they are contributing to something larger than themselves, something important. Some people have personal missions they accomplish through meaningful work. Others truly love what they do or the clients they serve. Some like the camaraderie and interaction with customers and coworkers. Other people like to fill their time with activity. Some workers like change, challenge, and diverse problems to solve.” Nice summary of why most scientists do their work, don’t you think?

An older theory known as the “Herzberg’s motivation-hygiene theory”(or the “two factor theory,”) suggests that job satisfaction and dissatisfaction are determined by different factors. This already indicated that the salary per se is not a positive motivator, but rather a “hygiene” factor.

  1. Factors that are work ‘motivators’ include challenging work, recognition, responsibility which give positive satisfaction, which arise from intrinsic conditions of the job itself, such as recognition, achievement, or personal growth.
  2. The work ‘hygiene factors’ which Herzberg suggested do not trigger positive satisfaction, are related to the work environment (e.g., company policies, supervisory practices, or wages/salary), and not necessarily related to the work itself, include: status, job security, salary and fringe benefits. However their absence leads to dissatisfaction, hence the name “hygiene” (its absence is hazardous).

What defines a ‘great work day’?
A Harvard Business Review study published in the latest issue (Amabile, T. M., Kramer, S. J “What really motivates workers”, HBR Jan-Feb 2010) concluded that the biggest factors in defining a workday as great was the perception of “making progress” and collaborations.

The authors underline the important role of the manager in making workers feel they had a great day. In the scientific slang, in an academic, as well as biotech/pharma laboratory, this personal might be refered to as the Principal Investigator (PI).

What a leader/manager should do:

  • Clarify goals
  • Use glitches as learning moments
  • Cultivate a culture of helpfulness, including rolling up own sleeves to pitch in
  • Recognize real progress (otherwise praise loses value)

The top three things a manager should avoid doing:

  • Changing goals autocratically
  • Being indecisive
  • Holding up resources

What makes people happy: common denominators and “diversity” in happiness

This is not off the topic, but it’s rather considering the whole person’s “happiness” as a combination of personal and professional aspirations.

In studying how personal/individual factors contribute to the overall human feeling of happiness, another report revealed that in fact both women and men share the two main sources of happiness: achieving professional/financial aspirations and… being married! (Plagnol and Easterlin, the Journal of Happiness Studies). These authors also discovered an inter-relationship between gender and age and happiness. Their conclusion was that… “Women end up less happy than men” because they feel less able to achieve their life goals. Women begin life happier than men but the difference wears off and by 48 yo, men are in average happier that women. Here are some age milestones that stood out from the gender comparison:
o 41: Age at which men’s financial satisfaction exceeds women’s financial satisfaction
o 48: Age at which men’s overall happiness exceeds women’s overall happiness
o 64: Age at which men’s satisfaction with family life exceeds women’s satisfaction

Harvard experts cited by Physics.org suggest the following rounded approach is most likely to create overall (lifelong) happiness:

  • Eat thoughtfully, exercise often, have daily ‘quiet’ time,
  • raise your children well, teach them to be kind!),
  • stash a few bucks away,
  • and ‘stop thinking it’s all about you! ‘ Giving money away creates lasting happiness compared to spending it on oneself which only creates a ‘buzz’, the kind of happiness that wears off quickly

What makes working couples happy?
Sharing responsibilities for paid (professional) and unpaid (house chores) work apparently works well in making working couples happier and more productive. For more insights see “Power couples”, The Scientist 2010, Volume 24 (1): 55.

What makes YOU happy?

 

References:
• ‘Best Places to Work 2009: Academia’, The Scientist Volume 23 (11) Page 43, 2009-11-01
• Heathfield, Susan M. ‘What motivates people’, About.com http://humanresources.about.com/od/rewardrecognition/a/needs_work.htm
• The ‘two factor theory’ http://en.wikipedia.org/wiki/Motivator-Hygiene_theory
• Plagnol, Anke C. and Richard A. Easterlin, “Aspirations, Attainments, and Satisfaction: Life Cycle Differences Between American Women and Men.” 2008, Journal of Happiness Studies, http://www.springerlink.com/content/4j11681jx415315k/
• Wiens Carl, ‘Power couples’, The Scientist 2010, Volume 1: 55, 2010-01-01

Read Full Post »

I just returned from the NIH where I was invited to lecture on translating science into therapies. I had presented my science there before and I was not quite sure how interesting they might find my broader perspective, which I had entitled: “The long course from ‘the Aha!’ to cures: can we do better – together?“

The standing room only audience provided a first clue that emphasis is evolving at the NIH… During the Q&A and in talking individually to several people, I could sense their intense interest and excitement regarding the many challenges – and opportunities – created by the translation of basic science into positive health outcomes. Several independently pointed out that Francis Collins, M.D., Ph.D., took no break from being confirmed to making his first appearance as the new NIH chief where he announced what he hoped to accomplish during his term. The overall underlying message was clear: no time to spare!

For those relying mainly on the funding that comes from the NIH to carry on science, it is very important to understand what the change at the NIH helm might mean for its future directions and priorities to increase chances of successful funding. In the bigger picture, all of us will be affected as the NIH-sponsored research is a major – if not the major – source for the new ideas that become one day life saving treatments. I dare to say that the success of these ideas is in no small measure due to the fact that the NIH, throughout various administrations (maybe in spite of?), has been one of the original and perennial implementers of innovation models, yet not even themselves might think of it that way. For instance, the NIH has a signature initiative called an “RFA” (requests for applications), where they invite independent researchers to submit proposals related to specific scientific and health questions, and they fund the winners. Isn’t this a classic case of “crowd-sourcing”, implemented way before the term was coined? The NIH also has an “RFP” (request for proposals) mechanism by which they contract projects with the various independent winners and create the network needed to sustain the project – isn’t that what is called elsewhere “out-sourcing” and “open innovation”?

I could not find a script of Collins’ speech, but I watched it for you! Here is a short run down of what he announced as his top 5 priorities for the NIH during his term:

  1. Apply new high throughput (“comprehensive”) technologies (e.g., nanotechnologies, genome wide-scans, proteomics) to understand fundamental biology questions as well as causes for different diseases.
  2. Emphasize translation of basic sciences into treatments, making “discoveries amenable for public benefit”
  3. Put science to work for the benefit of the heath care reform: “inform the conversation based on scientific evidence not on prejudice” by performing comparative effectiveness studies (e.g., study effect of life style changes vs. therapies for treatment of diabetes)
  4. Put greater focus on global health, including AIDS, malaria, tuberculosis and other major diseases in developing countries, by working with them in research and helping them develop their own capabilities
  5. Reinvigorate the biomedical research enterprise by making sure that funds are available to support younger investigators, increase work force diversity, encourage risk taking and innovation.  

I for one, cannot but applaud and embrace all these goals. Even as an academic researcher, I have always sought to “begin with the end in mind”, or how I like to refer to it “going back to the future”. In my case, this means starting with examining the real life case (the patient) to formulate the questions to take back to the lab for study in detail, increasing the chance that the answers from our research would be used to alter for the better the patient’s health in future

Some of the more hard core basic researchers might not entirely feel comfortable with the emphasis on translation. I agree that there is a fundamental need for fundamental research: the pursuit of questions that are so “out there” that no one can really tell where they might lead us or what they might connect with. Yet, after putting a lot of bright dots on… the blue sky, some need to concentrate on seeing patterns and be able to connect them, yet others will need to start figuring out how we might touch upon the new dots and patterns. I see the issue of translating science not as an imposition on fundamental research, but as an invitation to an open intellectual dialogue between basic, applied and clinical scientists, as well as product developers, regulators, and the public, where all can contribute with their own proficiency: the “constructive interference” effect. It is still not easy most of the times, as many places still operate based on narrow definitions of expertise and make make others feel as strangers in a stranger land. Thus, making scientific innovation happen for the benefit of humankind will require skilled, open-minded, and maybe fearless translators who can make sense of various intellectual languages and lands

Here is a list of related links:

Francis Collins, M.D., Ph.D., inaugural address to the NIH

About Translational research

The NIH Overview

In Wikipedia

Nature Medicine: In the land of the monolingual

NIH Funding opportunities for translational research

NIH-RAID (Rapid Access to Interventional Development 

NIH Translational research meetings

The NIH Roadmap

Read Full Post »

You guessed it! Location, location, location

A new research study from my Alma Mater, McGill University in Montreal, demonstrates major DNA differences between genes in blood cells and tissue cells of the same individual. Specifically, the researchers found a DNA mutation (of the BAK gene involved in cell death) in the tissue cells harvested from patients, but not in their blood cells. This study and other recent ones challenge the major current assumption under which we have operated for years, i.e. that our DNA is the same in all the cells throughout the body, a specific master template faithfully reproduced in each of us. We are not talking cancer where local mutations are known to occur in tumors. What does this mean for you?

–       As a researcher, therapy and/or diagnostic developer, etc., it means that you will likely have to look in the right place in the body, analyzing “the right” (relevant) cells. This is exciting, as it opens up a lot of potential great discoveries, cures and diagnostics. It is also good news for those who had set up or already work with tissue banks (is anybody reading: much more work needed? are we going to run into the needle in the haystack issue?)

–       As a regulator, decision maker, media, etc. you will have to realize that there is much more to come, so you might want to give it a chance… Many have begun not only to openy question the wisdom of genetic testing to derive disease associations, but to actively block any initiative along these lines.

–        As a patient and consumer of health innovation, you might have to be willing to allow removal of tissues (other than blood) from your body for accurate genetic testing. Only you can decide if that is good for you…

Yet another dimension is being added to “personalized medicine”. The biology of our bodies includes features that are manifested and influence locally and systemically (globally). The genetic information is less global than previously thought. Thus the testing, treatment and care will need to be not only tailored to the individual, but also to the specific tissue/body component affected and targeted for prevention or cure of the disease.

So, coming back to the old tried and true wisdom, when it comes to our most precious piece of real estate, our own body, we will need to chose wisely the location (of genetic testing, treatment, etc.)…

Read Full Post »

Can anybody become an innovator? Are innovators born or made? How much of the ability to innovate is dependent on learning from luminaries and from how many of them? Of course, one might ask first the question what innovation was. As I have pondered on that question in my first and other earlier posts, for the sake of briefly let’s just use the shortest definition of innovation I can come up with: “practical creativity”.

One could argue that you have to be a special type of person to innovate. Certainly, some are better or more efficient at it, but then again the difference might be that the others just have not been coached or encouraged to try.

One lesson that I would like to share is that it becomes possible to innovate when you realize that all it may take is connecting your gifts with your passion, your values, or what some might consider to be your ultimate goals. The more unlikely the combination between your gifts and your passions, the bigger chances you will be able to innovate – once you allow yourself to operate under this paradigm.

Here is why I think this works: you bring your strengths and then pushed by your motivation you will do your best to make things happen. Because you are passion-driven, you are willing to do what it takes, even if your efforts might not be encouraged and/or you might fail at first. Along the way, you will likely discover what else might be needed, e.g., what you might still have to learn or to be able to do, where do you need to be, with whom you need to associate… No doubt it helps if along the way you encounter people who make your discovery journey more efficient.

I think that real life examples are always useful. Should I talk about my innovation gurus and the insights gained from them? I’d rather not bore you with a list, so I will just mention the one I think to be my first… my 5th grade physics teacher! Somehow she made physics appear so cool and creative, yet useful. I was already studying art hoping to become a fashion or jewelry designer (“wearable art”?) but I was then encouraged to think I might be able to fulfill my inclination for creative endeavors AND in the same time satisfy my strong desire to help people (not only to look better)… Shazam! I could become a biomedical scientist.

I have continued to be fascinated by art and fashion, but went on to use my creativity to design therapies instead of clothing (the idea of personalized medicine is not that different from the idea of wearing clothes that really fit each of us, is it?) I have often gravitated toward art, even when doing science. By finding ways to discover and enhance the intricate beauty of the human body, as seen through a microscope or other imaging instrument, including developing a visually stunning technique to assess chemical reactions triggered by disease, I was able to stay close to practical art while in the same time fulfilling my passion to help people by designing strategies to diagnose medical problems and to enhance their health.

Read Full Post »

Now and then a scientific discovery about the human body captures the imagination of large audiences like the recent discovery that remnants of our “baby fat” are able to effectively convert calories into heat. For a long time we have assumed that adults completely lose all their brown fat and its benefits, but it turns out some remains in our upper back, in the dip between our collarbones and shoulders and some along our spines. Wow! How could we have missed it in this era of advanced medical knowledge and sophisticated diagnostic imaging?

The news hit hard the media and everybody’s soft spot (no pun intended!) in the same way as the good news that red wine and dark chocolate are actually good for your health (I am continuing to drink to that!). There were many reports describing the “cool new way to lose weight”. The research suggests that a few ounces of brown fat can help burn up to 400 calories a day, the equivalent of one hour of vigorous exercise, if we would simply turn down our heat a few degrees. Imagine being able to lose all those calories, or if you would prefer, being able to ingest an extra half (!) of a burger, by being willing to… shiver a little bit. People responded enthusiastically: could we maybe completely count on our good brown fat to take care of our bad fat, potentially trading our pot belly for a discreet hump?

Our own body might be showing us how to innovate, potentially turning our current assumptions about strategies to lose weight on their head. You can bet creative scientists and agile entrepreneurs are already planning experiments and setting up companies to analyze, detect, stimulate, regenerate, or recreate brown fat.

Why all this buzz about the recent discovery?
It’s fresh and unexpected, defying our current assumptions about ourselves and our ability to know it all.
It is apparently easily accessible.
It could immediately address one of our huge problems, the obesity epidemic.
It’s apparently painless for the consumer.

I went on to wonder: could this also be a simultaneous solution to our obesity problem and our energy crisis? People could be spending less energy heating their homes, maybe they would be willing to live in colder places? My son, the keeper of the truth, immediately reminded me that in the longer term, the effects of global warming might limit the existence of such places. In the short term, he said, with the summer coming to the Northern hemisphere, creating lower ambient temperatures could only mean people are going to use even more energy to cool their houses.

I hope this new science translates into innovation, I have always thought it was beneficial to preserve some of our childhood magic no matter how old we get. For some this might turn out to be a life saver. Meanwhile, I’ll be sticking to my rowing routine I already know is an effective way to burn those irresistible dark chocolate calories I ingest daily. Given the choice, personally I’d rather spend a little time in the sun (producing more vitamin D!) than shivering all day long anyway.

Read Full Post »

Older Posts »

%d bloggers like this: