Posts Tagged ‘alter-specialist’

The post was triggered by reading about the concept put forward by AM Shneider proposing that the evolution of science depends on being driven by four main “flavors” of scientists  http://bit.ly/cBQoTV.

The first scientist personality style is very much the “big picture” type, someone able to see a pattern where others had not, seeking new concepts without much concern about clarifying all the details or being afraid to make mistakes. A very useful quality of such scientists is not being prone to giving up easily in face of regular criticism for their out-of-the-box ideas. The second scientist type, usually the closest collaborator of the first, is essential in “translating” the fuzzy-ness of the initial idea into doable experiments, many times spearheading the invention of new techniques that allow carrying out the first experiments needed to test a new hypothesis. The third type of scientist – usually associated with the next stage needed for the development of a new scientific area – is more methodical, going after the thorough testing of the initial hypothesis, then asking more questions and deriving follow-up hypotheses. Finally, the fourth, most methodical, type of scientists obtain a lot of data, many times have encyclopedic knowledge of previous research, like to chronicle discoveries, but rarely produce some themselves.

This scientist type classification might be an oversimplification, but I think serves the higher purpose to highlight that ALL these four types offering different abilities and using different styles have been needed to create scientific knowledge and to move any field forward. I.e., new concepts cannot see the light of the day without having scientists who challenge the status-quo and are persistent at it, neither could we have gotten it “right” unless other scientists did not challenge and find ways to test such early concepts.

I understand Shneider’s attempt at classification was found controversial by some. As a scientist, I like assessing new hypotheses in general and such I found his idea intriguing (apparently I’m not so much bothered about lack of details or potential specific exemptions!), which in turn triggered my thinking on how it may be tested, and I willing to immediately volunteer myself as a first test subject. I was even able to see where I might fit into his classification. Also, I could continue to “assign” types to many of the people I have worked with in various stages in my scientific life, although most of us likely display a combination of some of these four types. I could then extend the same paradigm to characterize the overall “personality” of a lab or an institution in which I had worked, and even was able to gauge how the group personality had evolved as a function of it ratio of scientists representing various types, due to the turn-over characteristic to most academic and scientific labs in general.

A main reason for which I found the article interesting is my increasing interest in understanding what the best ways are to foster professional interactions between people with different thinking/personality styles.  After being part of, and leading several different scientific and other professional teams, I believe the most productive – and the most fun! – are the ones combining various professional expertise, diverse thinking and work styles, such as those possibly described for scientists by Shneider. However, working with a very diverse team is not without challenges, thus it is very important to not only fully understand our own perspective, but gain insight also how we could better mesh it with others to leverage the overall team performance. While classifications may upset some people, I think there are many precedent systems, some widely used to help identify one’s work style, personality, aptitudes, etc. (e.g., Myers Briggs), see a description of some at http://bit.ly/AefdT I myself took a few of these, and while many “findings” were merely confirming my own impression of myself, I found the most useful insights were gained about how to best interact with others with very different style.

I currently suggest that there should be an active effort to share this type of “personal” information that could be used to put together and run highly functional professional teams that take advantage of diversity.

What do you think of such classifications, could you identify yourself with any of the styles? Could be this a way to optimize interactions with very different people?

Read Full Post »

Personally I firmly believe that achieving creativity and innovation in science and beyond requires diversity… of thought! If you agree with this statement, let’s see if I can maintain your attention (I know, merely hearing – again – the ‘Diversity’ word might have turned you off!)

From my experience, most of us are not intentionally biased, yet in the same time not immune to the various cultural influences that have shaped our choices, including whom we feel “comfortable” associating with in our personal and professional relationships, or whom we might subconsciously stereotype or avoid. Also from experience, the best way to “cure” this is to have the opportunity to interact directly and learn first-hand from people who are different, then, by engaging in a more sustained and purposeful interactions with those with whom we discover common interests – which in my experience always had a positively innovative effect on what ever problem was at hand. To get started, one can always find at least one common denominator with almost anybody else on this planet: whether it is some of the shared personal or professional experiences or interests, stage in life or career, common acquaintances, hobbies, etc. I can always talk to other parents about our kids, other scientists about their own experiments, or anybody about countries they live(d) in and I might have been fortunate to visit, etc., etc.

Let’s try to define diversity. Statistics related to diversity usually capture data in terms of the “visible” (explicit) differences between people, e.g., gender, race, ethnic background, orientation, so this is what we have to rely on in terms of citing numbers. While these characteristics constitute a strong basis for diversity, i.e., people with different life and educational experiences may be likely to think, be motivated and act differently, I will however submit that these do not tell the whole story. Personality traits also play a major role, e.g., some of us are more creative or more analytical, “big picture” or micromanager type, while other are more directive or sensitive, direct or indirect, etc. So while we might look very different we might think alike, or might look very similar but have a very different perspective and approach to problem solving. These characteristics, I believe very important in shaping interactions and results, remain less acknowledged probably because they are more difficult to measure (assess and capture). However, making a conscious effort to engage people who represent several of these is important in creating a strong innovative team characterized by diversity of thought! My favorite kind of “constructive interference“…

Coming back to statistics, recent numbers provide evidence that while the situation might be slightly improving, gaps continue to exist between the demographics of talent diversity both in the USA and all over the world, and the higher in the hierarchy the less of it. These differences are true both in academia and in the industry (see list of references, incl. articles from “The New York Times” and “The Economist” and several statistics). One of the top reasons identified for the gap is the lack of role models, i.e. having in senior/high-profile positions people with whom various minorities could identify themselves. Seems to me this is a typical “chicken and the egg” type of problem: can’t attract/groom diverse people unless they can have access to role models, and you can’t have role models unless you had groomed or attracted them to join… How could this diversity ball get rolling???

Three main avenues could be explored for finding “cures” for this potential issue:

  1. Official/Institutional initiatives: aimed at designing programs and allocating funds for education and operational support
  2. Grass roots initiatives: creating “spontaneous” support networks, that provide a critical mass
  3. Personal initiatives: “upstart” individuals willing to get started “alone”, learn all the hard lessons and then pass on the learnings to willing newer recruits.

Diversity is a wast subject so I will try to focus on just one of the facets captured by statistics and recently highlighted in a few articles, likely because it is still March the “women’s history month”. Here are some published and personal experiences related to the situation of women in the work place.

  1. In the category of “official” initiatives,The New York Times” writes about the current status of women faculty at Harvard, which had attracted a lot of attention not too long ago due to the remarks of then president Larry Summers who said: “there are issues of intrinsic aptitude, and particularly of the variability of aptitude,” which he said are reinforced by “lesser factors involving socialization and continuing discrimination.” By making this single comment, Summers helped with the status of women at Harvard more than could ever dreamed of! He single handedly brought so much public scrutiny that upon his resignation, Harvard appointed their first woman president (Dr. Drew Gilpin Faust) and instituted programs aimed at increasing representation of women faculty, specifically in previously seriously underrepresented scientific and engineering departments (for more details see original reference, below). The rest of academia and the private sector are not doing much better, especially in terms of women representation at the higher levels (see statistics for USA and Europe). In the USA, the Equal Employment Opportunity Commission is prohibiting employment discrimination, however this is not universally applicable (see link for details). European countries have similar programs and have been passing additional related laws that aim at the next level of employment equity, including mandating that 40% of the corporate board membership be female. An article recently published in “The Economist” points out these measures would address the symptom but not the cause: not enough professional women to choose from for leadership positions! The article emphasizes that the best way to ensure an increase in the number of women on boards is to take steps to enable access of more women to the right experiences down on the corporate ladder. As with everything else, the human “talent pipeline” needs to be strong to generate a great output. My personal view on such initiatives is the while very useful to “keep us honest” and provide financial incentives and support, they are many times not very popular, especially with those who can not identify with the need and or the potential bias.
  2. The “grass roots” networks are by contrast those people choose to create and support. A truly great support system is created by people who are “like” and “unlike”, whether in terms of personal or professional characteristics (real diversity!) but are willing to understand, learn to appreciate differences and help widely. A person “like” me is able to share with me similar experiences, their “pain” and their tried strategies and successful solutions. “Unlike” people and professionals can help me understand the others’ perspectives and approaches. These represent a great opportunity for all of us to prove we are not biased. Such support networks can provide access to information via various sources (the best is directly from willing mentors!!) but also connect individuals with other education and work opportunities, including identification of collaborators. Also from personal experiences, the best mentors were those whom I had personally identified and approached for help, not the ones who have been “designated” to me via official programs.  In an effort to create support opportunities, I have startedMy Lab Your Lab” , a global online scientist professional community whose essential mission is to enable member-driven support. We encourage our members to reach out to seek and offer assistance from and to all.
  3. In the personal support category, I include individuals who have the courage to join work teams which are constituted from essentially different people to learn how to “survive” and actually thrive among them – diversity goes both ways! These individuals can become agents of change and the heart of the talent diversity snowball that allows it to form and get bigger… I think this works best when they voluntarily assume that role, because it is not an easy thing to do, requiring courage, extra time and effort, potentially at the expense of other professional goals. However, rewards could be great both for the person and the work place that facilitates such efforts. This is a very important point: the work environment needs to be supportive. No matter how accomplished and willing to help, such individual efforts will lead nowhere, just as the soil needs to be prepared, or else even the most exceptional seed will not survive.

One of my proudest contribution to diversity is related to my experience as a female and “biomedical” (medicine) faculty member joining a graduate program at the Georgia Institute of Technology: 100% male and 100% engineering. I think it helped that I am generally “gender blind” myself in work situations and I had been already operating for several years in another male dominated field, the world of academic cardiology. Yet, the first thing I thought of (because it was so obvious!!) and articulated to the people who had hired me was: “Next I will help you recruit some great female faculty”. Indeed they were on board with it, and together we proceeded to attract and hire two more women. Within a couple of years we became the “go to” place for female graduate biomedical engineering candidates, to the point where by the time I moved several years later, the student graduating class was 100 % (!) female. When asked why they chose Georgia Tech over other potentially more established programs, our graduate female students said that seeing several female faculty in the program helped them envision the possibility of academic success and increased their confidence that they would be able to relate if needed. Our ‘girls’ did not turn out to actually request or need much gender-specific help from us, the mere existence of female faculty had worked! My take home lesson was that it was worth taking the risk to be the first “one of a kind,” and getting involved in supporting efforts to attract and build a basis for more diversity which in turn engendered positive change and innovation.

So, several ways we can all get this ball rolling!

U.S. Equal Employment Opportunity Commission http://www.eeoc.gov/employers/index.cfm
Lewin, T: “Women Making Gains on Faculty at Harvard”, The New Your times, March 13, 2010 http://nyti.ms/9QZyyX
Schumpeter: “Skirting the issue: Imposing quotas for women in boardrooms tackles a symptom of discrimination, not the cause” The Economist, March 11,m 2010 http://bit.ly/9rs8VA
EUR (2009) She figures 2009: Statistics and Indicators on Gender Equality in Science http://bit.ly/4QWnk5. EUR 23856 EN EUR 23856 EN (160 p.)
Leadley J (2009) Women in US academic medicine: Statistics and Benchmarking Report 2008-2009 http://bit.ly/8mB3e6. (34 p.)
AWIS (The Association of Women in Science) web page with links to various data sets http://bit.ly/97O2nF
“The Scientist” salary survey by gender and ethnicity http://bit.ly/d81RKP

Read Full Post »

I just returned from the NIH where I was invited to lecture on translating science into therapies. I had presented my science there before and I was not quite sure how interesting they might find my broader perspective, which I had entitled: “The long course from ‘the Aha!’ to cures: can we do better – together?“

The standing room only audience provided a first clue that emphasis is evolving at the NIH… During the Q&A and in talking individually to several people, I could sense their intense interest and excitement regarding the many challenges – and opportunities – created by the translation of basic science into positive health outcomes. Several independently pointed out that Francis Collins, M.D., Ph.D., took no break from being confirmed to making his first appearance as the new NIH chief where he announced what he hoped to accomplish during his term. The overall underlying message was clear: no time to spare!

For those relying mainly on the funding that comes from the NIH to carry on science, it is very important to understand what the change at the NIH helm might mean for its future directions and priorities to increase chances of successful funding. In the bigger picture, all of us will be affected as the NIH-sponsored research is a major – if not the major – source for the new ideas that become one day life saving treatments. I dare to say that the success of these ideas is in no small measure due to the fact that the NIH, throughout various administrations (maybe in spite of?), has been one of the original and perennial implementers of innovation models, yet not even themselves might think of it that way. For instance, the NIH has a signature initiative called an “RFA” (requests for applications), where they invite independent researchers to submit proposals related to specific scientific and health questions, and they fund the winners. Isn’t this a classic case of “crowd-sourcing”, implemented way before the term was coined? The NIH also has an “RFP” (request for proposals) mechanism by which they contract projects with the various independent winners and create the network needed to sustain the project – isn’t that what is called elsewhere “out-sourcing” and “open innovation”?

I could not find a script of Collins’ speech, but I watched it for you! Here is a short run down of what he announced as his top 5 priorities for the NIH during his term:

  1. Apply new high throughput (“comprehensive”) technologies (e.g., nanotechnologies, genome wide-scans, proteomics) to understand fundamental biology questions as well as causes for different diseases.
  2. Emphasize translation of basic sciences into treatments, making “discoveries amenable for public benefit”
  3. Put science to work for the benefit of the heath care reform: “inform the conversation based on scientific evidence not on prejudice” by performing comparative effectiveness studies (e.g., study effect of life style changes vs. therapies for treatment of diabetes)
  4. Put greater focus on global health, including AIDS, malaria, tuberculosis and other major diseases in developing countries, by working with them in research and helping them develop their own capabilities
  5. Reinvigorate the biomedical research enterprise by making sure that funds are available to support younger investigators, increase work force diversity, encourage risk taking and innovation.  

I for one, cannot but applaud and embrace all these goals. Even as an academic researcher, I have always sought to “begin with the end in mind”, or how I like to refer to it “going back to the future”. In my case, this means starting with examining the real life case (the patient) to formulate the questions to take back to the lab for study in detail, increasing the chance that the answers from our research would be used to alter for the better the patient’s health in future

Some of the more hard core basic researchers might not entirely feel comfortable with the emphasis on translation. I agree that there is a fundamental need for fundamental research: the pursuit of questions that are so “out there” that no one can really tell where they might lead us or what they might connect with. Yet, after putting a lot of bright dots on… the blue sky, some need to concentrate on seeing patterns and be able to connect them, yet others will need to start figuring out how we might touch upon the new dots and patterns. I see the issue of translating science not as an imposition on fundamental research, but as an invitation to an open intellectual dialogue between basic, applied and clinical scientists, as well as product developers, regulators, and the public, where all can contribute with their own proficiency: the “constructive interference” effect. It is still not easy most of the times, as many places still operate based on narrow definitions of expertise and make make others feel as strangers in a stranger land. Thus, making scientific innovation happen for the benefit of humankind will require skilled, open-minded, and maybe fearless translators who can make sense of various intellectual languages and lands

Here is a list of related links:

Francis Collins, M.D., Ph.D., inaugural address to the NIH

About Translational research

The NIH Overview

In Wikipedia

Nature Medicine: In the land of the monolingual

NIH Funding opportunities for translational research

NIH-RAID (Rapid Access to Interventional Development 

NIH Translational research meetings

The NIH Roadmap

Read Full Post »

Our educational journeys, when and where (in its most general sense) did we start them and where through these have taken us, have a lot to do with “where we are coming from” (i.e., our current perspective and approach to things). Multiple personal and cultural anthropological factors influence our formation as individuals. To keep on my previous post’s train of thought, I will refer specifically to issue regarding the exam type choices.

My own early educational experiences (I was initially trained as a physicist) did not include multiple choice questions exams. Quite frankly, it was probably the main factor that allowed me to survive the rather arduous process to emerge with scientific credentials. I became familiar with the multiple choice exams afterward during my North American education in the life sciences and medicine. As I concentrated on unraveling the intricacies of the human body I thought  the years I had spent resolving differential equations modeling inanimate matter behavior might have been a huge waste. Yet, I finally realized the real value of a training gained through examinations of abilities based on a combination of writing essay, solving new problems, and oral (“free style”) exams, requiring us to understand fundamental principles and to use them to continuously deduct or construct solutions on the spot. These had armed us with a system for thinking through any kind of problem. We also had to develop the ability to clearly (and efficiently) explain in words our thinking process and interact live with our examiners, which further encourages (forces?) cultivation of our creative side. I now credit my initial training for the ease of doing well later on my multiple choice tests. On the other hand, I am pretty convinced that, personally, I would have had trouble passing as successfully through a reversed sequence of exam styles.

One instance when the realization of the likely impact of differences in educational and selection systems finally struck home not too long ago. While attending a professional session aimed at assessing personality profiles, I turned out to be the only “creative” out of a group of 20+ scientifically trained people. The most surprising to me was my colleagues’ reaction: “How can you possibly be creative? You are a scientist!” (?!?) Furthermore, corporate HR guidelines recommend that people with my profile work in the sales or marketing divisions rather than in R&D. One cannot but wonder: are the current education and selection systems working to most efficiently filter out all the creatives from the scientific and technical fields?!? Likely! Furthermore, is the common work environment placing people into boxes, force fitting or even rejecting the ones who are different or refuse to fill predefined boxes? Would this be expected to have an impact on our overall ability to innovate? I would love to hear other opinions…

My hypothesis, that not only the field of education but also the place of education plays an important role in our predisposition to innovation, has been confirmed by many conversations with other foreign-trained individuals. Besides the many obvious ethnical differences that influence our formation in general, many of the foreign-trained individuals are the product of different educational systems where the multiple choice selection does not reign supreme, thus were not filtered out tightly by its use. Other differences are likely to put their mark. For instance, individuals might have also been trained to think more broadly.

Times also put their mark on the issue. The younger generations, currently using mostly keyboards to communicate, are likely to erode the domination of either side, allowing an increased use of both sides of our brains: the end of the lopsided – or maybe lobe-sided – “left brain-right hand” era”? We all, regardless of age, are increasingly using new learning, communication, and cooperation channels, a phenomenon which I think is majorly responsible for the definite surge in the interest toward understanding global issues and wide open cooperation. Take for instance the “crowd-sourcing” phenomenon, which allows a wide variety of people to jump at the chance to solve problems, including some that normally would not be presented to them, because they do not have the credentials normally qualifying them as “specialists”. Due to the broad availability of knowledge on the Internet, what one needs to be able to do is not to remember information, but be able to use it in a constructive way. Technically speaking, the only relevant product of the educational system should be developing reasoning skills and knowledge management skills, finally releasing us from our current hang-up on possessing factual domain knowledge, and the definition of ability based on narrowly classified specialties or specific degrees. We could then step into the brave new era of creative problem solving.


Addendum. As I was writing this entry, the following joke was landing into my e-mail box… (seemed to hit too close to let it drop).

“During a physics lecture to the pre-med class, the professor was explaining a particularly complicated concept. A student interrupted him:

‘Why do we have to learn this physics stuff?’

The professor responded: ‘To save lives!’ and he continued his lecture.

After just a few moments the student interrupted again. ‘So how does physics save lives?’

The professor intently stared at the student. After a long silence, he said: ‘Physics saves lives because it prevents certain people from getting into the medical school.'”

Read Full Post »

We all probably have recollections of this kind of movie snippets: a dark saloon or tavern filled with smoke and locals. Doors open, enter the stranger. The silence and tension that follows can be cut with a knife… everybody is reaching for their gun… In contrast, in his book The Medici Effect, Johansson describes the convivial atmosphere in a tavern at the intersection of waterways bringing travelers from all over the world. They all share a common thing, they are all “strangers” eager to learn from the others’ and reveal their own diverse knowledge about new ways of doing things in distant lands. This reciprocal mental stimulation works as a great idea exchange. New ideas are afterward disseminated for implementation in faraway places.  What is different in the two settings and how do these examples relate to innovation?  

While there is a lot of current agreement that large, diverse groups are innovative, I did not find much said about the “stranger in a strange land” situation in relation to innovation. Maybe less striking, but equally disengaging can be an attempt to venture into unfamiliar intellectual territory, an area outside the boundaries for which one can offer widely accepted educational or professional credentials. This is especially hard when the person is a “lone stranger” facing a homogenous congregation, which shares an unlike professional past, or even just a different way of thinking. For instance, a previously well-recognized and respected expert can expect to receive mockery or total dismissal when offering an opinion in a gathering of specialists trained in a different discipline. Some of these “strangers” may be enthusiastic but inexperienced, yet others might be already recognized specialists in another field or corporation making a dramatic mid or late career change to join a long-established group. Their fresh perspectives are likely to be greeted with similar unwelcoming receptions. No wonder many people prefer to avoid stepping out of their comfort zone and they refrain from offering fresh perspectives.

What do we, the “natives”, stand to lose by not welcoming inputs from neophytes, is there a benefit to listening to someone who “does not have a clue”? Many!!! People who had different training and different experiences did not have a chance to learn about the “accepted” rules, hence they do not have preconceived ideas of what’s “right” or why “this would never work”. These people stun the domain experts by asking the question which we should all ask all the time: “Why not?!?”  Personally I like to call these people “fearless” and feel they deserve the kind of respect pioneers get.

My high opinion has been forged during the many years in which I have had the good fortune to work with bright people who were novices and/or came from very different backgrounds. Particularly fascinating for me was working with young engineers when tackling life science/medical problems (see article). These were obviously smart, well-educated people, but many could not even remember if they actually took biology back during high school, much like the saying: “engineers speak Greek, doctors speak Latin”. Yet, when presented with the request to solve a life science or medical problem, engineers turned in the most innovative solutions by applying their own style of thinking and tools (e.g., models and calculations using… yes, Greek symbols!), and by interjecting into the solution their previous, supposedly unrelated, knowledge. Efforts to engage engineers in medical innovation have been springing up everywhere, one I recently witnessed was The Ohio State Innaugural Engineering and Medicine Translational Symposium.

I decided it may be fitting to call someone an “alter-specialist”, as in the other specialist, while s/he engages in solving a problem normally considered outside her/his area of training/expertise. The alter-specialist did not have the chance to chose sides in following a camp of thought or another in the area of the problem (as the great majority of specialists trained in that field), thus can maintain an objective attitude toward facts found to relate to the problem’s subject matter. Furthermore, the alter-specialist has the capacity to access knowledge and processes that would not be applied to the problem at hand by the domain specialist. As soon as I had reassured them that it was not only completely safe, but actually preferable for them to do so, my young engineer collaborators would challenge my assumptions everyday. I also discovered it was important to immediately preface my interactions with the firm statement that there was “no such thing as a stupid question”, i.e., if a question can be formulated, then it just cannot be stupid ( as in “cogito, ergo sum”!).

The environment offered to the alter-specialist(s) is an essential feature enabling innovative problem solving. From problem formulation, to being able to guide the alter-specialists without imposing preconceived rules and ideas, with a constant attention to the mind-openness allowing to entertain what a domain expert could easily consider outlandish suggestions.

Importantly, I found many evidences that the apparently amazing success of the alter-specialist in providing innovative solutions is a reproducible event. For instance, I was pleased to read the data emerging from analyzing the success stories of the Innocentive platform.  Dr. Lakhani, who conducted the study, was cited by the New York Times to say that: “the further the problem was from the solver’s expertise, the more likely they were to solve it.”  A fine example of constructive interference! One could conclude that the alter-specialists were able to solve these though problems by using alternative approaches, naturally sheltered from the potential scrutiny of the domain specialist while working solo until the solution was crafted. More and more web based platforms seek to harness the power of “crowd-sourcing” for innovative problem solving and design.

Clearly, breakthrough innovation is generated by “strangers” willing to dive into solving somebody else’s problems. This, of course challenges the status quo in many ways, including how we normally accept input or recognize potential capabilities, the widely spread practice of recruiting people based on narrowly defined and accepted credentials, and is in turn calling for the innovation of such cookie-cutter worn-out processes.

Please DO interfere!

Read Full Post »

%d bloggers like this: